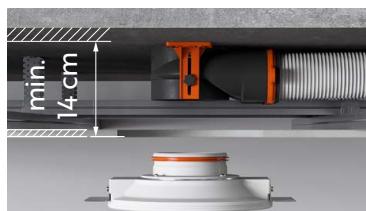
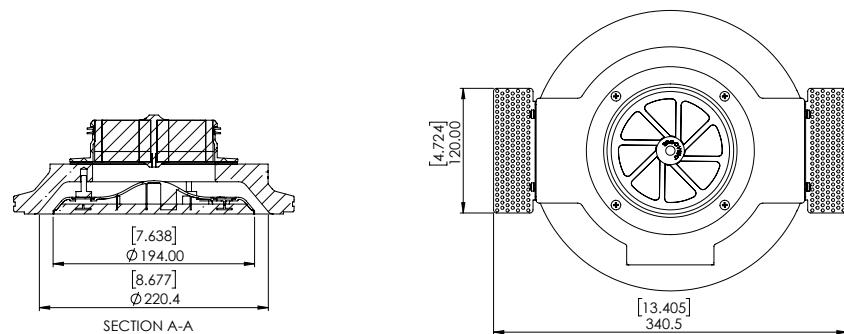


RONDO-COANDA 125

Hidden ventilation diffusers
for ceilings and walls

The gypsum cover "armor" is a patented solution that protects against damage.

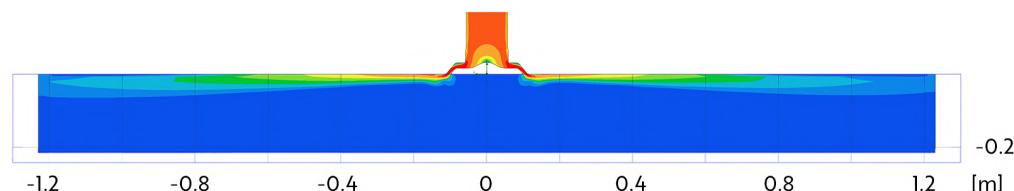
125mm connection / with damper

Round-shaped diffuser is a recessed ventilation diffuser designed to deliver air along the ceiling surface using the **COANDA effect** that is ideal for modern interiors where airflow comfort and discretion are key. Ideally suited for spaces where people are often directly beneath the diffuser—air movement is virtually imperceptible while the room's microclimate remains balanced. High-quality gypsum body: robust, bubble-free casting with integrated mounting elements. Smooth, paint-ready surface finish.

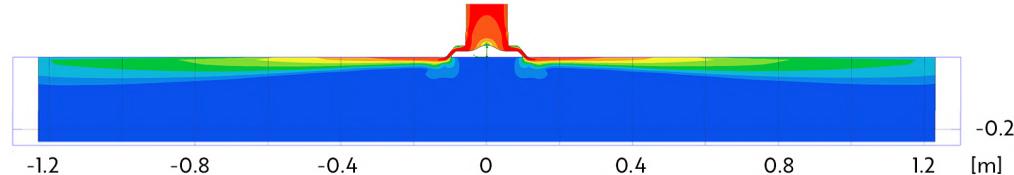
Minimum installation height: 140 mm
≈ 5,51"

A fiberglass liner is included with the product

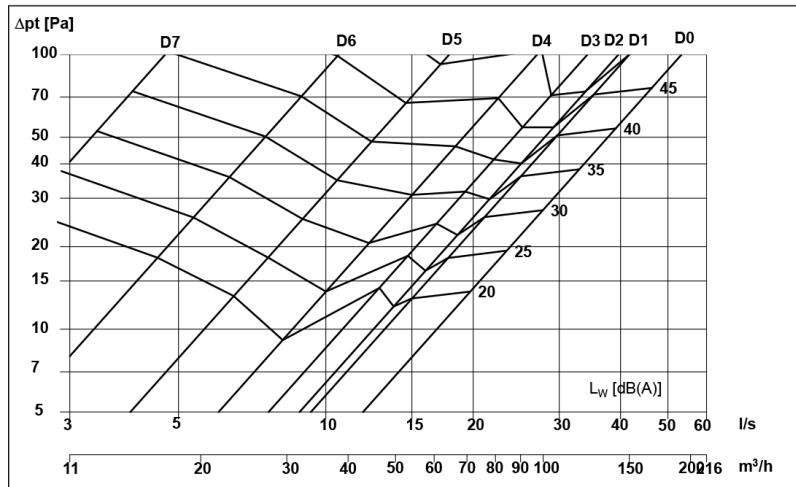
Easy and fast installation



Airflow damper is included with the product


THROW DISTANCE

85 m³/h


120 m³/h

FLOW NOISE (in accordance with ISO 3741) and PRESSURE DROP test report

SUPPLY

Diagram for pressure and flow noise:

$$L_{W_{oct}} [\text{dB}] = L_{WA} + K_{oct}$$

q [l/s]	Dp_t [Pa]	L_{WA} [dBA]		63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
			K_{oct}	-6	0	-1	-4	-4	-7	-17	-22

Octave correction factors to the diagram are calculated at the listed value of either q , Δp_t or L_{WA}/L_{DA}

Calculation of pressure and sound effect according to flow:

$$\text{Sound effect: } L_{W(\text{oct or A})} = k \cdot \log(q) + L_0$$

L_W - sound effect [dB]

k - factor, sound effect [-]

q - flow [l/s]

K_{factor} - factor, balancing [l/(s·√Pa)]

$$\text{Total pressuredrop: } \Delta p_t = c_{pt} \cdot q^2$$

L_0 - addend, sound effect [-]

p_i - pressuredifference, balancing [Pa]

Δp_t - total pressuredrop [Pa]

$$\text{Balancing: } q = K_{\text{factor}} \cdot \sqrt{p_i}$$

c_{pt} - factor, total pressuredrop [Pa·s²/l²]

	Total $p_{c_{ptot}}$	Balancing K-factor		L_{WA}	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
D0	0.0352	Not measured	k L_0	67.3 67.2	50.8 42.6	48.9 -32.8	70.9 -68.4	73.4 -79.2	65.9 -75.0	59.9 -65.4	69.4 -88.2	69.9 -92.8
D1	0.0576	Not measured	k L_0	67.2 -59.0	72.5 -78.1	37.7 -16.4	51.8 -37.5	64.6 -57.7	63.7 -59.7	78.1 -81.5	81.4 -94.5	82.9 -104.4
D2	0.0639	Not measured	k L_0	76.6 -67.2	86.8 -93.4	58.3 -43.3	52.4 -36.8	67.0 -59.2	78.3 -73.5	82.0 -80.3	90.2 -104.0	90.6 -110.8
D3	0.0855	Not measured	k L_0	85.5 -74.8	86.1 -83.4	32.1 -6.6	58.9 -42.9	77.6 -70.4	87.0 -79.4	99.1 -100.8	87.2 -95.7	88.4 -102.0
D4	0.1371	Not measured	k L_0	56.7 -31.7	58.4 -38.8	43.3 -19.8	51.4 -31.4	57.0 -39.9	56.8 -34.8	56.7 -37.3	74.6 -72.5	74.9 -76.7
D5	0.3139	Not measured	k L_0	71.1 -37.7	63.4 -36.3	40.2 -5.1	75.5 -43.2	63.1 -34.0	70.2 -40.0	76.3 -51.4	71.8 -56.0	72.4 -62.0
D6	0.8871	Not measured	k L_0	68.0 -24.6	24.5 10.9	24.0 13.2	61.2 -18.8	65.9 -25.9	63.7 -26.1	78.4 -40.7	73.4 -44.3	75.9 -51.1
D7	4.5308	Not measured	k L_0	69.0 -6.7	101.4 -34.5	39.7 0.2	47.6 -1.0	59.2 -6.4	80.1 -17.1	61.3 -8.4	67.9 -18.2	68.5 -23.9

no damper

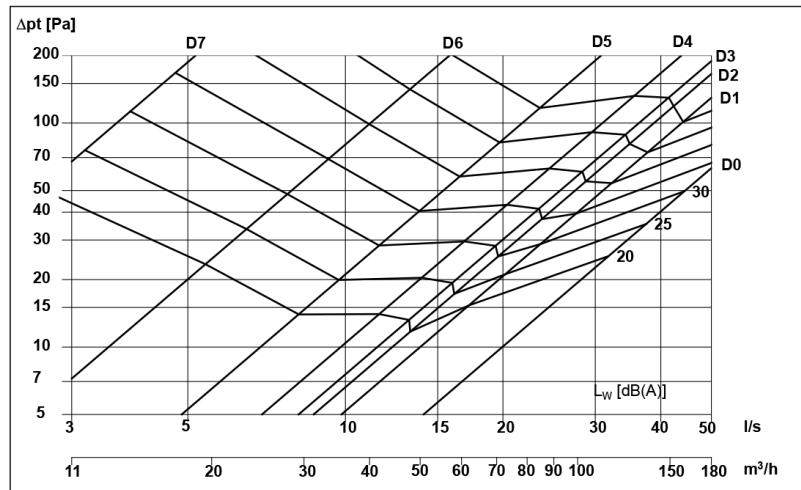
1 segment

2 segments

3 segments

4 segments /
full open

4 segments /
75% open



4 segments /
50% open

FLOW NOISE (in accordance with ISO 3741) and PRESSURE DROP test report

EXTRACT

Diagram for pressure and flow noise:

$$L_{W_{oct}} [\text{dB}] = L_{WA} + K_{oct}$$

q [l/s]	Dp_t [Pa]	L_{WA} [dBA]		63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
-	-	33	K_{oct}	0	-1	-3	-3	-5	-6	-13	-21

Octave correction factors to the diagram are calculated at the listed value of either q , Δp_t or L_{WA}/L_{DA}

Calculation of pressure and sound effect according to flow:

$$\text{Sound effect: } L_{W(\text{oct or A})} = k \cdot \log(q) + L_0$$

L_W - sound effect [dB]

q - flow [l/s]

k - factor, sound effect [-]

K_{factor} - factor, balancing [l/(s $\cdot \sqrt{\text{Pa}}$)]

$$\text{Total pressuredrop: } \Delta p_t = c_{pt} \cdot q^2$$

L_0 - addend, sound effect [-]

p_t - pressuredifference, balancing [Pa]

$$\text{Balancing: } q = K_{\text{factor}} \cdot \sqrt{p_t}$$

Δp_t - total pressuredrop [Pa]

c_{pt} - factor, total pressuredrop [$\text{Pa} \cdot \text{s}^2/\text{l}^2$]

	Total $p_{c_{\text{plot}}}$	Balancing K-factor		L_{WA}	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
D0	0.0252	Not measured	k L_0	69.2 -83.9	42.8 -35.8	45.1 -39.2	84.0 -113.1	46.2 -49.7	57.7 -69.5	87.6 -121.2	84.0 -122.1	84.2 -128.4
D1	0.0518	Not measured	k L_0	73.4 -70.7	26.5 -5.3	53.8 -44.6	52.7 -45.1	48.2 -38.8	67.7 -68.5	83.5 -90.1	84.8 -100.0	85.4 -109.1
D2	0.0662	Not measured	k L_0	59.7 -47.1	20.7 6.6	23.5 1.6	35.6 -17.0	42.9 -27.3	59.0 -51.5	69.0 -66.0	77.7 -84.5	77.7 -92.7
D3	0.0755	Not measured	k L_0	60.5 -47.9	56.9 -44.9	56.0 -41.1	61.3 -51.6	49.6 -36.3	62.9 -57.6	61.9 -55.4	71.2 -75.0	72.2 -84.9
D4	0.1042	Not measured	k L_0	61.6 -45.5	46.0 -30.1	56.3 -39.3	56.1 -39.8	53.3 -37.6	59.2 -48.1	67.0 -58.9	77.4 -80.1	78.7 -89.5
D5	0.2111	Not measured	k L_0	65.1 -39.3	85.0 -65.9	46.8 -19.8	58.0 -33.2	58.1 -33.8	60.4 -38.3	73.9 -57.0	88.8 -80.6	89.9 -89.0
D6	0.8025	Not measured	k L_0	64.0 -26.9	32.0 2.8	51.8 -18.1	41.2 -6.4	58.3 -24.1	71.2 -39.3	65.3 -35.1	84.5 -59.8	85.1 -67.9
D7	7.4766	17.2	k L_0	57.9 -4.1	40.3 11.2	40.6 -1.7	56.0 -11.0	39.5 3.1	50.1 -3.1	73.3 -20.3	68.2 -23.1	69.3 -28.8

D0
no damper

D1
1 segment

D2
2 segments

D3
3 segments

D4
4 segments /
full open

D5
4 segments /
75% open

D6
4 segments /
50% open

D7
4 segments /
25% open